这里是普通文章模块栏目内容页
机器人抓取再出新招,人类双手会得到进一步解放吗?

机器人早已在工业流水线尤其是制造业上得到了广泛的应用,比如手机制造、汽车组装等。在最初的应用中,机器人设计被固定在某一项任务当中,打眼就是打眼,安螺丝就是安螺丝。

在这个时期,工业机器人实质上是替代了简单的组装工作,并且只适应设计好的特定环节,基本没有任何延展性。

而在人工智能时代,加入了机器视觉之后,机器人的应用范围逐渐一下子被扩大了许多。更多的行业被涉足并发生了质的革新,比如物流的智能分拣。

目前来说,对机器人进行视觉训练,应用在工业当中的基本任务就是:认识某物。也就是说,通过对机器的训练,使其能够分辨出哪一样是自己的工作对象。而这也是机器视觉学习的最简单而有效的应用。

但工业应用场景并不仅仅只有识别。比如对仓储物品的抓取和分类,或者很多并不是固定物品的应用场景,这就会导致机器既有的学习内容用不上。那么,不认识这个东西,机器就不知道该如何处理,在做一些抓取搬运工作的时候就难免会出岔子。

从这个角度上来说,以后对工业机器人的要求,将不满足于局限于既有的学习内容,同样还要有自主的学习能力。也就是说,在机器人碰到陌生的物体的时候,能够自主地判断该怎么去处理。

AI绘制三维图形,判断最佳抓取姿势

有人觉得,培养机器人的迁移学习能力不就好了吗?比如记住一些物体的具体特征,人工智能既然能分辨出什么是人、什么是大猩猩、什么是猫狗,那么只要训练到位,机器人同样也能对其他陌生的物体做出分辨。

但很可惜这样想可能有点不切实际。比如让机器人去把仓库里乱七八糟的东西给归置整齐了,里面可能有大电视机,也可能有小面包机,它怎么分类?它该怎么拿?所以,很显然用认识同一类物体的方法是不适用于这样的场景当中的。

那么,为了让机器人什么都能拿,麻省理工的研究人员们动了点心思。

研究人员设计了这样一个系统:面对自己不熟悉的物体,机器人能够快速地对其进行估算,然后做出最适合的抓取和细节处理决策。

该系统被称为DON(Dense Object Nets,密集物体联网),通过神经网络的学习,机器人可以产生一个视觉路线图,对物体进行一个约莫20分钟的视觉检查。

在此基础上,机器人会从多个角度来确定物体的点,然后把所有的点形成一个整体坐标系统。把这些点联系到一起之后,就可以绘制出物体的三维立体图。值得注意的是,在绘制三维立体图的过程中,机器完全不需要人的干预,因此这种学习方式又被称为自我监督式学习。

这样的学习过程其实是和人类有很大的相似之处。我们看到暖瓶知道要握把才能提起,该系统的目的也是训练机器人的这种能力。只不过在目前的实验中,三维立体图形绘制出来之后,还需要研究人员在电脑上给出指定的位置,以告诉机器人从哪里下手。

在实验中,机器人成功抓起了一只鞋子和杯子。


机器人抓取再出新招,人类双手会得到进一步解放吗?

收藏
0
有帮助
0
没帮助
0