这里是普通文章模块栏目内容页
超级大汇总!200多个最好的机器学习、NLP和Python教程
【新品产上线啦】51CTO播客,随时随地,碎片化学习

超级大汇总!200多个最好的机器学习、NLP和Python教程

大数据文摘出品

编译:瓜瓜、Aileen

这篇文章包含了我目前为止找到的最好的教程内容。这不是一张罗列了所有网上跟机器学习相关教程的清单——不然就太冗长太重复了。我这里并没有包括那些质量一般的内容。我的目标是把能找到的最好的教程与机器学习和自然语言处理的延伸主题们连接到一起。

我这里指的“教程”,是指那些为了简洁地传授一个概念而写的介绍性内容。我尽量避免了教科书里的章节,因为它们涵盖了更广的内容,或者是研究论文,通常对于传授概念来说并不是很有帮助。如果是那样的话,为何不直接买书呢?当你想要学习一个基本主题或者是想要获得更多观点的时候,教程往往很有用。

我把这篇文章分为了四个部分:机器学习,自然语言处理,python和数学。在每个部分中我都列举了一些主题,但是因为材料的数量庞大,我不可能涉及到每一个主题。

如果你发现到我遗漏了哪些好的教程,请告诉我!我尽量把每个主题下的教程控制在五个或者六个,如果超过了这个数字就难免会有重复。每一个链接都包含了与其他链接不同的材料,或使用了不同的方式表达信息(例如:使用代码,幻灯片和长文),或者是来自不同的角度。

机器学习

Start Here with Machine Learning (machinelearningmastery.com):https://machinelearningmastery.com/start-here/

Machine Learning is Fun! (medium.com/@ageitgey):https://medium.com/@ageitgey/machine-learning-is-fun-80ea3ec3c471

Rules of Machine Learning: Best Practices for ML Engineering(martin.zinkevich.org):

Machine Learning Crash Course: Part I, Part II, Part III (Machine Learning at Berkeley):

https://ml.berkeley.edu/blog/2016/11/06/tutorial-1/

https://ml.berkeley.edu/blog/2016/12/24/tutorial-2/

https://ml.berkeley.edu/blog/2017/02/04/tutorial-3/

An Introduction to Machine Learning Theory and Its Applications: A Visual Tutorial with Examples (toptal.com):https://www.toptal.com/machine-learning/machine-learning-theory-an-introductory-primer

A Gentle Guide to Machine Learning (monkeylearn.com):https://monkeylearn.com/blog/gentle-guide-to-machine-learning/

Which machine learning algorithm should I use? (sas.com):https://blogs.sas.com/content/subconsciousmusings/2017/04/12/machine-learning-algorithm-use/

The Machine Learning Primer (sas.com):https://www.sas.com/content/dam/SAS/en_us/doc/whitepaper1/machine-learning-primer-108796.pdf

Machine Learning Tutorial for Beginners (kaggle.com/kanncaa1):https://www.kaggle.com/kanncaa1/machine-learning-tutorial-for-beginners

激活和损失函数

Sigmoid neurons (neuralnetworksanddeeplearning.com):#sigmoid_neurons

What is the role of the activation function in a neural network? (quora.com):https://www.quora.com/What-is-the-role-of-the-activation-function-in-a-neural-network

Comprehensive list of activation functions in neural networks with pros/cons(stats.stackexchange.com):https://stats.stackexchange.com/questions/115258/comprehensive-list-of-activation-functions-in-neural-networks-with-pros-cons

Activation functions and it’s types-Which is better? (medium.com):https://medium.com/towards-data-science/activation-functions-and-its-types-which-is-better-a9a5310cc8f

Making Sense of Logarithmic Loss (exegetic.biz):

Loss Functions (Stanford CS231n):#losses

L1 vs. L2 Loss function (rishy.github.io):

The cross-entropy cost function (neuralnetworksanddeeplearning.com):#the_cross-entropy_cost_function

偏差

Role of Bias in Neural Networks (stackoverflow.com):https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks/2499936#2499936

Bias Nodes in Neural Networks(makeyourownneuralnetwork.blogspot.com):

What is bias in artificial neural network? (quora.com):https://www.quora.com/What-is-bias-in-artificial-neural-network

感知机

Perceptrons (neuralnetworksanddeeplearning.com):#perceptrons

The Perception (natureofcode.com):https://natureofcode.com/book/chapter-10-neural-networks/#chapter10_figure3

Single-layer Neural Networks (Perceptrons) (dcu.ie):~humphrys/Notes/Neural/single.neural.html

From Perceptrons to Deep Networks (toptal.com):https://www.toptal.com/machine-learning/an-introduction-to-deep-learning-from-perceptrons-to-deep-networks

回归

Introduction to linear regression analysis (duke.edu):~rnau/regintro.htm

Linear Regression (ufldl.stanford.edu):

Linear Regression (readthedocs.io):

Logistic Regression (readthedocs.io):https://ml-cheatsheet.readthedocs.io/en/latest/logistic_regression.html

Simple Linear Regression Tutorial for Machine Learning(machinelearningmastery.com):

Logistic Regression Tutorial for Machine Learning(machinelearningmastery.com):https://machinelearningmastery.com/logistic-regression-tutorial-for-machine-learning/

Softmax Regression (ufldl.stanford.edu):

梯度下降

Learning with gradient descent (neuralnetworksanddeeplearning.com):#learning_with_gradient_descent

Gradient Descent (iamtrask.github.io):

How to understand Gradient Descent algorithm (kdnuggets.com):

An overview of gradient descent optimization algorithms(sebastianruder.com):

Optimization: Stochastic Gradient Descent (Stanford CS231n):

生成学习

Generative Learning Algorithms (Stanford CS229):

A practical explanation of a Naive Bayes classifier (monkeylearn.com):https://monkeylearn.com/blog/practical-explanation-naive-bayes-classifier/

支持向量机

An introduction to Support Vector Machines (SVM) (monkeylearn.com):https://monkeylearn.com/blog/introduction-to-support-vector-machines-svm/

Support Vector Machines (Stanford CS229):

Linear classification: Support Vector Machine, Softmax (Stanford 231n):

深度学习

A Guide to Deep Learning by YN² (yerevann.com):

Deep Learning Papers Reading Roadmap (github.com/floodsung):https://github.com/floodsung/Deep-Learning-Papers-Reading-Roadmap

Deep Learning in a Nutshell (nikhilbuduma.com):

A Tutorial on Deep Learning (Quoc V. Le):~quocle/tutorial1.pdf

What is Deep Learning? (machinelearningmastery.com):https://machinelearningmastery.com/what-is-deep-learning/

#p#分页标题#e#

What’s the Difference Between Artificial Intelligence, Machine Learning, and Deep Learning? (nvidia.com):https://blogs.nvidia.com/blog/2016/07/29/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai/

Deep Learning — The Straight Dope (gluon.mxnet.io):https://gluon.mxnet.io/

优化和降维

Seven Techniques for Data Dimensionality Reduction (knime.org):https://www.knime.org/blog/seven-techniques-for-data-dimensionality-reduction

Principal components analysis (Stanford CS229):

Dropout: A simple way to improve neural networks (Hinton @ NIPS 2012):

How to train your Deep Neural Network (rishy.github.io):

长短期记忆(LSTM)

A Gentle Introduction to Long Short-Term Memory Networks by the Experts(machinelearningmastery.com):https://machinelearningmastery.com/gentle-introduction-long-short-term-memory-networks-experts/

Understanding LSTM Networks (colah.github.io):

Exploring LSTMs (echen.me):

Anyone Can Learn To Code an LSTM-RNN in Python (iamtrask.github.io):

卷积神经网络

Introducing convolutional networks (neuralnetworksanddeeplearning.com):#introducing_convolutional_networks

Deep Learning and Convolutional Neural Networks(medium.com/@ageitgey):https://medium.com/@ageitgey/machine-learning-is-fun-part-3-deep-learning-and-convolutional-neural-networks-f40359318721

Conv Nets: A Modular Perspective (colah.github.io):

Understanding Convolutions (colah.github.io):

递归神经网络

Recurrent Neural Networks Tutorial (wildml.com):

Attention and Augmented Recurrent Neural Networks (distill.pub):

The Unreasonable Effectiveness of Recurrent Neural Networks(karpathy.github.io):

A Deep Dive into Recurrent Neural Nets (nikhilbuduma.com):

强化学习

Simple Beginner’s guide to Reinforcement Learning & its implementation(analyticsvidhya.com):https://www.analyticsvidhya.com/blog/2017/01/introduction-to-reinforcement-learning-implementation/

A Tutorial for Reinforcement Learning (mst.edu):https://web.mst.edu/~gosavia/tutorial.pdf

Learning Reinforcement Learning (wildml.com):

Deep Reinforcement Learning: Pong from Pixels (karpathy.github.io):

生成对抗网络(GANs)

Adversarial Machine Learning (aaai18adversarial.github.io):https://aaai18adversarial.github.io/slides/AML.pptx

What’s a Generative Adversarial Network? (nvidia.com):https://blogs.nvidia.com/blog/2017/05/17/generative-adversarial-network/

Abusing Generative Adversarial Networks to Make 8-bit Pixel Art(medium.com/@ageitgey):https://medium.com/@ageitgey/abusing-generative-adversarial-networks-to-make-8-bit-pixel-art-e45d9b96cee7

An introduction to Generative Adversarial Networks (with code in TensorFlow) (aylien.com):

Generative Adversarial Networks for Beginners (oreilly.com):https://www.oreilly.com/learning/generative-adversarial-networks-for-beginners

多任务学习

An Overview of Multi-Task Learning in Deep Neural Networks(sebastianruder.com):

自然语言处理

Natural Language Processing is Fun! (medium.com/@ageitgey):https://medium.com/@ageitgey/natural-language-processing-is-fun-9a0bff37854e

A Primer on Neural Network Models for Natural Language Processing(Yoav Goldberg):~yogo/nnlp.pdf

The Definitive Guide to Natural Language Processing (monkeylearn.com):https://monkeylearn.com/blog/the-definitive-guide-to-natural-language-processing/

Introduction to Natural Language Processing (algorithmia.com):https://blog.algorithmia.com/introduction-natural-language-processing-nlp/

Natural Language Processing Tutorial (vikparuchuri.com):

Natural Language Processing (almost) from Scratch (arxiv.org):https://arxiv.org/pdf/1103.0398.pdf

深度学习和自然语言处理

Deep Learning applied to NLP (arxiv.org):https://arxiv.org/pdf/1703.03091.pdf

Deep Learning for NLP (without Magic) (Richard Socher):https://nlp.stanford.edu/courses/NAACL2013/NAACL2013-Socher-Manning-DeepLearning.pdf

Understanding Convolutional Neural Networks for NLP (wildml.com):

Deep Learning, NLP, and Representations (colah.github.io):

Embed, encode, attend, predict: The new deep learning formula for state-of-the-art NLP models (explosion.ai):https://explosion.ai/blog/deep-learning-formula-nlp

Understanding Natural Language with Deep Neural Networks Using Torch(nvidia.com):https://devblogs.nvidia.com/parallelforall/understanding-natural-language-deep-neural-networks-using-torch/

Deep Learning for NLP with Pytorch (pytorich.org):

词向量

Bag of Words Meets Bags of Popcorn (kaggle.com):https://www.kaggle.com/c/word2vec-nlp-tutorial

On word embeddings Part I, Part II, Part III (sebastianruder.com)

The amazing power of word vectors (acolyer.org):https://blog.acolyer.org/2016/04/21/the-amazing-power-of-word-vectors/

word2vec Parameter Learning Explained (arxiv.org):https://arxiv.org/pdf/1411.2738.pdf

Word2Vec Tutorial — The Skip-Gram Model, Negative Sampling(mccormickml.com):

编码器-解码器

Attention and Memory in Deep Learning and NLP (wildml.com):

Sequence to Sequence Models (tensorflow.org):https://www.tensorflow.org/tutorials/seq2seq

Sequence to Sequence Learning with Neural Networks (NIPS 2014):https://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf

#p#分页标题#e#

Machine Learning is Fun Part 5: Language Translation with Deep Learning and the Magic of Sequences (medium.com/@ageitgey):https://medium.com/@ageitgey/machine-learning-is-fun-part-5-language-translation-with-deep-learning-and-the-magic-of-sequences-2ace0acca0aa

tf-seq2seq (google.github.io):https://google.github.io/seq2seq/

Python

Machine Learning Crash Course (google.com):https://developers.google.com/machine-learning/crash-course/

Awesome Machine Learning (github.com/josephmisiti):https://github.com/josephmisiti/awesome-machine-learning#python

7 Steps to Mastering Machine Learning With Python (kdnuggets.com):

An example machine learning notebook (nbviewer.jupyter.org):%20Machine%20Learning%20Notebook.ipynb

Machine Learning with Python (tutorialspoint.com):https://www.tutorialspoint.com/machine_learning_with_python/machine_learning_with_python_quick_guide.htm

范例

How To Implement The Perceptron Algorithm From Scratch In Python(machinelearningmastery.com):

Implementing a Neural Network from Scratch in Python (wildml.com):

A Neural Network in 11 lines of Python (iamtrask.github.io):

Implementing Your Own k-Nearest Neighbour Algorithm Using Python(kdnuggets.com):

ML from Scatch (github.com/eriklindernoren):https://github.com/eriklindernoren/ML-From-Scratch

Python Machine Learning (2nd Ed.) Code Repository (github.com/rasbt):https://github.com/rasbt/python-machine-learning-book-2nd-edition

Scipy and numpy

Scipy Lecture Notes (scipy-lectures.org):

Python Numpy Tutorial (Stanford CS231n):

An introduction to Numpy and Scipy (UCSB CHE210D):https://engineering.ucsb.edu/~shell/che210d/numpy.pdf

A Crash Course in Python for Scientists (nbviewer.jupyter.org):#ii.-numpy-and-scipy

scikit-learn

PyCon scikit-learn Tutorial Index (nbviewer.jupyter.org):

scikit-learn Classification Algorithms (github.com/mmmayo13):https://github.com/mmmayo13/scikit-learn-classifiers/blob/master/sklearn-classifiers-tutorial.ipynb

scikit-learn Tutorials (scikit-learn.org):

Abridged scikit-learn Tutorials (github.com/mmmayo13):https://github.com/mmmayo13/scikit-learn-beginners-tutorials

Tensorflow

Tensorflow Tutorials (tensorflow.org):https://www.tensorflow.org/tutorials/

Introduction to TensorFlow — CPU vs GPU (medium.com/@erikhallstrm):https://medium.com/@erikhallstrm/hello-world-tensorflow-649b15aed18c

TensorFlow: A primer (metaflow.fr):https://blog.metaflow.fr/tensorflow-a-primer-4b3fa0978be3

RNNs in Tensorflow (wildml.com):

Implementing a CNN for Text Classification in TensorFlow (wildml.com):

How to Run Text Summarization with TensorFlow (surmenok.com):

PyTorch

PyTorch Tutorials (pytorch.org):

A Gentle Intro to PyTorch (gaurav.im):

Tutorial: Deep Learning in PyTorch (iamtrask.github.io):https://iamtrask.github.io/2017/01/15/pytorch-tutorial/

PyTorch Examples (github.com/jcjohnson):https://github.com/jcjohnson/pytorch-examples

PyTorch Tutorial (github.com/MorvanZhou):https://github.com/MorvanZhou/PyTorch-Tutorial

PyTorch Tutorial for Deep Learning Researchers (github.com/yunjey):https://github.com/yunjey/pytorch-tutorial

数学

Math for Machine Learning (ucsc.edu):https://people.ucsc.edu/~praman1/static/pub/math-for-ml.pdf

Math for Machine Learning (UMIACS CMSC422):~hal/courses/2013S_ML/math4ml.pdf

线性代数

An Intuitive Guide to Linear Algebra (betterexplained.com):https://betterexplained.com/articles/linear-algebra-guide/

A Programmer’s Intuition for Matrix Multiplication (betterexplained.com):https://betterexplained.com/articles/matrix-multiplication/

Understanding the Cross Product (betterexplained.com):https://betterexplained.com/articles/cross-product/

Understanding the Dot Product (betterexplained.com):https://betterexplained.com/articles/vector-calculus-understanding-the-dot-product/

Linear Algebra for Machine Learning (U. of Buffalo CSE574):~srihari/CSE574/Chap1/LinearAlgebra.pdf

Linear algebra cheat sheet for deep learning (medium.com):https://medium.com/towards-data-science/linear-algebra-cheat-sheet-for-deep-learning-cd67aba4526c

Linear Algebra Review and Reference (Stanford CS229):

概率

Understanding Bayes Theorem With Ratios (betterexplained.com):https://betterexplained.com/articles/understanding-bayes-theorem-with-ratios/

Review of Probability Theory (Stanford CS229):

Probability Theory Review for Machine Learning (Stanford CS229):https://see.stanford.edu/materials/aimlcs229/cs229-prob.pdf

Probability Theory (U. of Buffalo CSE574):~srihari/CSE574/Chap1/Probability-Theory.pdf

Probability Theory for Machine Learning (U. of Toronto CSC411):~urtasun/courses/CSC411_Fall16/tutorial1.pdf

微积分

#p#分页标题#e#

How To Understand Derivatives: The Quotient Rule, Exponents, and Logarithms (betterexplained.com):https://betterexplained.com/articles/how-to-understand-derivatives-the-quotient-rule-exponents-and-logarithms/

How To Understand Derivatives: The Product, Power & Chain Rules(betterexplained.com):https://betterexplained.com/articles/derivatives-product-power-chain/

Vector Calculus: Understanding the Gradient (betterexplained.com):https://betterexplained.com/articles/vector-calculus-understanding-the-gradient/

Differential Calculus (Stanford CS224n):

Calculus Overview (readthedocs.io):

相关报道:

https://medium.com/machine-learning-in-practice/over-200-of-the-best-machine-learning-nlp-and-python-tutorials-2018-edition-dd8cf53cb7dc

【本文是51CTO专栏机构大数据文摘的原创文章,微信公众号“大数据文摘( id: BigDataDigest)”】

大数据文摘二维码

收藏
0
有帮助
0
没帮助
0